






GUANGXI LIUGONG GROUP CO., LTD. LIUZHOU OVM MACHINERY CO., LTD. www.ovm.cn



# OVM BRIEF OVM PRESTRESSING SYSTEMS



- + With plenty of experience in prestressing field
- + Abundant in technical research & development
- + With ISO9001-2008 quality management system
- +Products complying with AASHTO, ASTM, BS, ETA, FIP, GB, JIS
- +ETA certificate ETA-10/0307



### OVM tops the Chinese prestressing industry

Thanks to 40 years of experience, OVM is now a leading product supplier and specialist contractor in China in the field of prestressing and other special construction techniques. With a strong reputation for reliability, professionalism and innovation, OVM systems have successfully worked on numerous projects, including bridges, highways, highspeed railways, buildings, dams, nuclear power plants, and in doing so have achieved worldwide acknowledgement.

### Sufficient R&D

As a basic company strategy, more than 5% annual turnover would be invested in the R&D. OVM has a national technology center and a postdoctoral research workstation in cooperation with renowned universities and institutions etc. OVM owns 390 technical patents by 2010, which guarantee the multiple efficient solutions to the clients.

### **Full range of products**

OVM focuses on developing outstanding prestressing technology and building up renowned brand in civil engineering field. As the biggest supplier in China, OVM provides full range of prestressing system including 5 categories, 30 series and more than 420 types of products:



I. OVM Post-tensioning Systems
II. OVM Cable Systems (for cable-stayed bridge, arch bridge and suspension bridge)
III. OVM Construction Solutions (Incremental Launching, turning and heavy lifting)
IV. OVM Bearings & Expansion Joints
V. OVM Monitoring Systems

# Certified management and products

The lasting and reliable OVM products are guaranteed by outstanding management.

OVM is certified with ISO9001-2008 Quality Management System by BSI and CQC. Each process of production from raw material purchasing to delivery is strictly under the control of management

system. OVM products meet the requirements of major standards: AASHITO,ASTM, BS, EN, ETA, FIP, GB, JIS, PTI etc. Meanwhile, OVM works closely with external, independent institutions for testing and improvement of all products.

### Yours truly dependable partner

With worldwide network, OVM strives continually to provide high quality services to clients and is seeking partnerships in areas of prestressing design for structural engineering projects, provision of prestressing systems, and contracting of special structures.

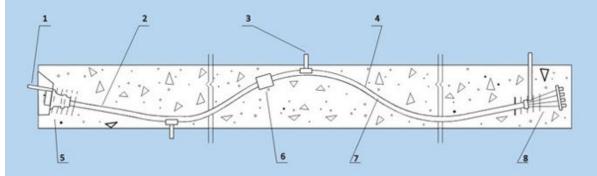
### Certifications of OVM

OVM PRESTRESSING SYSTEMS
















# **OVM** Post-tensioning System in Girder



1.Grout tube 2.Duct 3.Vent 4.Strand bundle 5.Stressing-end anchorage 6.Coupler 7.Grout 8.Dead-end anchorage Type P (alternatively)

OVM Post-tensioning System consists of anchor age (stressing-end, dead-end), coupler, strand and duct. OVM post-tensioning systems mating strands with various diameters: OVM13 for strand dia. 12.5/12.7/12.9mm, OVM15 for strand dia. 15.24/15.3 /15.7mm, OVM22 for strand dia. 21.8mm, OVM28 for strand dia. 28.6mm, which feature:

- Adaptable for strand with various strength such as 1570/1670/1770/1860/2000MPa and various diameters.
- Full range of tendon sizes are available (1~55 strands and larger sizes are available on request).

- No need to accurately determine strand length in advance.
- High anchoring coefficient, reliable and stable.
- \* For OVM post-tensioning System:
  - +Anchor coefficient:  $\eta_a \ge 0.95$ ;
  - + Total strain at ultimate tensile force:  $\varepsilon_{ap\mu} \geq 2.0\%$ .
- Simple and reliable equipment for installation, tensioning and grouting.

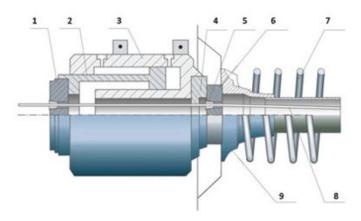






# **Integral** Assembly of OVM Post-tensioning System




Stressing-end

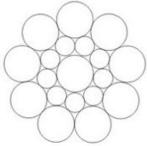
(Two-ends-stressing is available as per design)

Dead-end: Type P

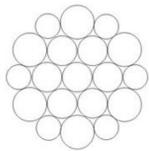


- 1. Tool anchorage
- 2. Piston
- 3. Cylinder
- 4. Spacer
- 5. Wedge
- 6. Anchor head 7. Spiral reinforcement
- 8. Strand
- 9. Bearing plate




# Strand




The strand to fit OVM Post-tensioning System should comply with ASTM416, GB/T 5224, prEN 10138 or JIS G3536. The strand could be bare, galvanized or epoxycoated.

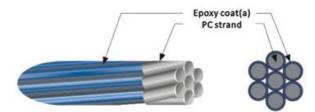


Cross-section of 13/15/18mm strand



Cross-section of 22mm strand




Cross-section of 28mm strand

|                                                             |       |                    |                         | N                 | lain D           | ata               |                         |                   |                    |                    |                    |
|-------------------------------------------------------------|-------|--------------------|-------------------------|-------------------|------------------|-------------------|-------------------------|-------------------|--------------------|--------------------|--------------------|
| Туре                                                        |       | 13m                | m (0.5")                |                   |                  | <b>15</b> n       | nm (0.6")               |                   | 18mm               | 22mm               | 28mm               |
| Designation                                                 |       | .0138-3<br>Y1860S7 | ASTM416-06<br>Grade 270 | GB/T<br>5224-2003 | prEN 1<br>(2006) | 0138-3<br>/186057 | ASTM416-06<br>Grade 270 | GB/T<br>5224-2003 | JIS G3536<br>-2008 | JIS G3536<br>-2008 | JIS G3536<br>-2008 |
| Nom. Dia. (mm)                                              | 12.5  | 12.9               | 12.7                    | 12.7              | 15.3             | 15.7              | 15.24                   | 15.2              | 17.8               | 21.8               | 28.6               |
| Nom. Cross<br>Section (mm²)                                 | 93    | 100                | 98.7                    | 98.7              | 140              | 150               | 140                     | 140               | 208.4              | 312.9              | 532.4              |
| Nom. Mass<br>(Kg/m)                                         | 0.726 | 0.781              | 0.775                   | 0.775             | 1.093            | 1.172             | 1.102                   | 1.101             | 1.652              | 2.482              | 4.229              |
| Nom. Yield<br>Strength (MPa)                                | 1634  | 1640               | 1675                    |                   | 1636             | 1640              | 1676                    |                   |                    |                    |                    |
| Nom. Tensile<br>Strength (MPa)                              | 1860  | 1860               | 1860                    | 1860              | 1860             | 1860              | 1860                    | 1860              |                    |                    |                    |
| Min. Breaking<br>Load (kN)                                  | 173   | 186                | 183.7                   | 184               | 260              | 279               | 260.7                   | 260               | 387                | 573                | 949                |
| Young's Modulus<br>(Gpa)                                    |       |                    |                         |                   | A                | pprox. 19         | 5                       |                   |                    |                    |                    |
| Relaxation after<br>1,000h at 20° C<br>at 70% breaking load |       |                    |                         |                   |                  | Max. 2.5          |                         |                   |                    |                    |                    |

### OVM PRESTRESSING SYSTEMS



### Epoxy-Coated PC Strand

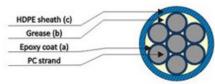


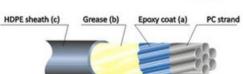
- ☐ With excellent anti-corrosion property
- □ UV resistance
- ☐ Same strength and mechanical property as bare strand
- ☐ Reduce the extra cost of corrosion protection
- ☐ Extended service life of the strand

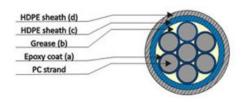
In recent years, Epoxy-coated Strand (ECS) is widely applied to severe environments such as marine structures or structures in salt damage area.

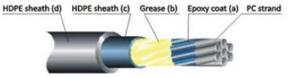
|          |               | Epo                     | ky-Coated            | PC Strand               | d                                              |                                       |          |
|----------|---------------|-------------------------|----------------------|-------------------------|------------------------------------------------|---------------------------------------|----------|
|          | PC str        | rand                    |                      | 01                      | VMECS13/ECS15                                  |                                       |          |
| Туре     | Spec.<br>(mm) | Unit<br>weight<br>(g/m) | External<br>dia.(mm) | Unit<br>weight<br>(g/m) | Coating<br>thickness<br>on Single<br>wire (mm) | Unit<br>weight of<br>coating<br>(g/m) | Material |
| OVMECS13 | 12.7          | 775                     | 13.5                 | 789                     | 0.13-0.30                                      | 14.9                                  | Ероху    |
| OVMECS15 | 15.2          | 1102                    | 16.0                 | 1119                    | 0.13-0.30                                      | 17.7                                  | Ероху    |

### Unbonded Strand





**Epoxy-coated Unbonded Strand** 

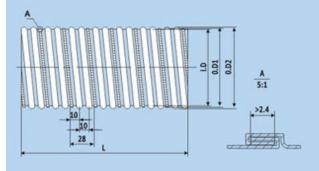

### Epoxy-Coated Unbonded Strand

Bare Unbonded Strand










|        |               |                         | Si             | ngle La | ayer PE S | heath | ed                              |             |        |      |  |
|--------|---------------|-------------------------|----------------|---------|-----------|-------|---------------------------------|-------------|--------|------|--|
|        | PC st         | rand                    |                |         |           | UPS13 | E/15E                           |             |        |      |  |
| Туре   | Spec.<br>(mm) | Unit<br>weight<br>(g/m) | nt dia. weight |         | Thickness | (mm)  | Weight<br>of<br>grease<br>(g/m) | of Material |        |      |  |
|        |               |                         |                |         | а         | с     | b                               | а           | b      | С    |  |
| UPS13E | 12.7          | 775                     | ≥15.6          | 887     | 0.13-0.30 | ≥1.0  | ≥43                             | Facility    |        |      |  |
| UPS15E | 15.2          | 1102                    | ≥18.1          | 1235    | 0.13-0.30 | ≥1.0  | ≥50                             | Epoxy       | Grease | HDPE |  |

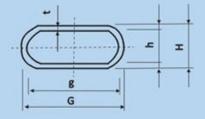
|         |               |                         | Do            | uble-l                           | ayer PE   | She  | ath                                      | ed    |       |        |      |      |
|---------|---------------|-------------------------|---------------|----------------------------------|-----------|------|------------------------------------------|-------|-------|--------|------|------|
|         | PC st         | rand                    |               |                                  |           | UF   | S13E2                                    | /15E2 |       |        |      |      |
| Туре    | Spec.<br>(mm) | Unit<br>weight<br>(g/m) | External dia. | Unit Thickness (mm) weight (g/m) |           | n)   | Weight<br>of Material<br>grease<br>(g/m) |       |       | erial  |      |      |
|         |               |                         |               |                                  | a         | c    | d                                        | b     | a     | b      | С    | d    |
| UPS13E2 | 12.7          | 775                     | ≥16.9         | 912                              | 0.13-0.30 | ≥1.0 | 0.8-                                     | ≥43   |       |        | HODE | UDDE |
| UPS15E2 | 15.2          | 1102                    | ≥19.7         | 1270                             | 0.13-0.30 | ≥1.0 | 0.8-                                     | ≥50   | Ероху | Grease | HDPE | HDPE |

# **Galvanized Steel Duct**

### Round Duct








|           |     |       | Main I | Data |       |             | Unit    |
|-----------|-----|-------|--------|------|-------|-------------|---------|
|           |     | Duct  |        |      | Coup  | ler of duct |         |
| Specs     | I.D | O.D1  | O.D2   | I.D  | 0.D1  | O.D2        | Length  |
| 2B40(Zn)  | 40  | 42.5  | 45.5   | 45   | 47.5  | 50.5        | 200~300 |
| 2B45(Zn)  | 45  | 47.5  | 50.5   | 50   | 52.5  | 55.5        | 200~300 |
| 2B50(Zn)  | 50  | 52.5  | 55.5   | 55   | 57.5  | 60.5        | 200~300 |
| 2B55(Zn)  | 55  | 57.5  | 60.5   | 60   | 62.5  | 65.5        | 200~300 |
| 2B60(Zn)  | 60  | 62.5  | 65.5   | 65   | 67.5  | 70.5        | 200~300 |
| 2B65(Zn)  | 65  | 67.5  | 70.5   | 70   | 72.5  | 75.5        | 200~300 |
| 2B70(Zn)  | 70  | 72.5  | 75.5   | 75   | 77.5  | 80.5        | 200~300 |
| 2B75(Zn)  | 75  | 77.5  | 80.5   | 80   | 82.5  | 85.5        | 200~300 |
| 2B80(Zn)  | 80  | 82.5  | 85.5   | 85   | 87.5  | 90.5        | 200~300 |
| 2B85(Zn)  | 85  | 87.5  | 90.5   | 90   | 92.5  | 95.5        | 200~300 |
| 2B90(Zn)  | 90  | 92.5  | 95.5   | 95   | 97.5  | 100.5       | 200~300 |
| 2B95(Zn)  | 95  | 97.5  | 100.5  | 100  | 102.5 | 105.5       | 200~300 |
| 2B100(Zn) | 100 | 102.5 | 105.5  | 105  | 107.5 | 110.5       | 200~300 |
| 2B105(Zn) | 105 | 107.5 | 110.5  | 110  | 112.5 | 115.5       | 200~300 |
| 2B110(Zn) | 110 | 112.5 | 115.5  | 115  | 117.5 | 120.5       | 200~300 |
| 2B115(Zn) | 115 | 117.5 | 120.5  | 120  | 122.5 | 125.5       | 200~300 |
| 2B120(Zn) | 120 | 122.5 | 125.5  | 125  | 127.5 | 130.5       | 200~300 |
| 2B125(Zn) | 125 | 127.5 | 130.5  | 130  | 132.5 | 135.5       | 200~300 |
| 2B130(Zn) | 130 | 132.5 | 135.5  | 135  | 137.5 | 140.5       | 200~300 |
| 2B135(Zn) | 135 | 137.5 | 140.5  | 140  | 142.5 | 145.5       | 200~300 |
| 2B140(Zn) | 140 | 142.5 | 145.5  | 145  | 147.5 | 150.5       | 200~300 |
| 2B145(Zn) | 145 | 147.5 | 150.5  | 150  | 152.5 | 155.5       | 200~300 |
| 2B150(Zn) | 150 | 152.5 | 155.5  | 155  | 157.5 | 160.5       | 200~300 |
| 2B155(Zn) | 155 | 157.5 | 160.5  | 160  | 162.5 | 165.5       | 200~300 |
| 2B165(Zn) | 160 | 162.5 | 165.5  | 165  | 167.5 | 170.5       | 200~300 |

I. One-class-bigger duct can be used as the coupler.

II. Special duct can be supplied on request.

### Flat Duct





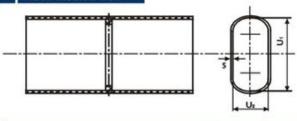
|           |    |    |      | Ma | in D | ata |     |    |          |      | Uni     |
|-----------|----|----|------|----|------|-----|-----|----|----------|------|---------|
|           |    | -  | Duct |    |      |     |     | Co | upler of | duct |         |
| Specs     | g  | G  | h    | н  | t    | g   | G   | h  | н        | t    | Length  |
| 2B50B(Zn) | 50 | 56 | 19   | 25 | 3    | 57  | 62  | 25 | 30       | 2.5  | 200~300 |
| 2B60B(Zn) | 60 | 66 | 19   | 25 | 3    | 67  | 72  | 25 | 30       | 2.5  | 200~300 |
| 2B70B(Zn) | 70 | 76 | 19   | 25 | 3    | 77  | 82  | 25 | 30       | 2.5  | 200~300 |
| 2B90B(Zn) | 90 | 96 | 19   | 25 | 3    | 97  | 102 | 25 | 30       | 2.5  | 200~300 |

I. One-class-bigger duct can be used as the coupler.


II. Special duct can be supplied on request.

# **Plastic Duct**

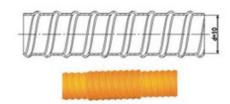
Equipped with OVM Posttensioning System, made of HDPE material, compared to steel duct, its advantages as follow:


- □ Lower friction
- □ Excellent sealing property
- Better anti-corrosion performance
- ☐ More flexibility

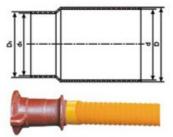
# 1. Bearing plate 2. OLT coupler 3. Plastic duct 4. OLG coupler 5. Vent






### Flat Plastic Duct






|             |    | Main Da | ta (Flat Duct) | Un                | nit:mm |
|-------------|----|---------|----------------|-------------------|--------|
| Designation | U1 | U2      | s              | Anchorage adapted |        |
| OVMSBGB-41  | 41 | 22      | 2.5            | BM15(13)-2        |        |
| OVMSBGB-60  | 60 | 22      | 2.5            | BM15(13)-2~3      |        |
| OVMSBGB-72  | 72 | 23      | 2.5            | BM15(13)-4        |        |
| OVMSBGB-90  | 90 | 23      | 2.5            | BM15(13)-5        |        |

### Coupler (OLG)







OLT coupler

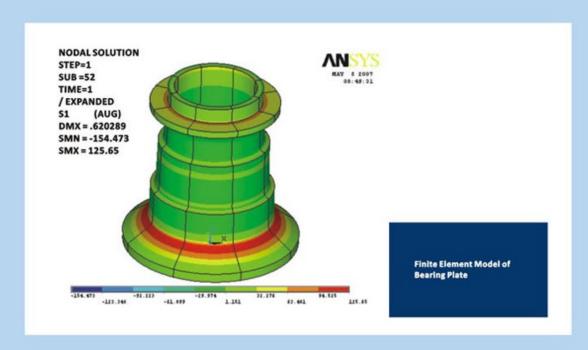
|             |       | Main Data o | of OLG & OL1 |       | Unit:          |
|-------------|-------|-------------|--------------|-------|----------------|
| Designation | D     | d           | dı           | Dı    | L              |
| OLG-50      | ф75   | ф60         |              |       |                |
| OLG-60      | Φ86   | ф70         |              |       |                |
| OLG-70      | Φ97   | φ80         |              |       |                |
| OLG-80      | Ф106  | φ90         |              |       | More than      |
| OLG-85      | ф112  | ф95         |              |       | 250mm or       |
| OLG-90      | ф 122 | ф 100       |              |       | as per request |
| OLG-100     | ф132  | ф 110       |              |       |                |
| OLG-120     | ф154  | ф 130       |              |       |                |
| OLG-130     | Ф164  | ф 140       |              |       |                |
| OLT-(2~3)   | Ф64   | ф 67        | ф52          | Ф56   |                |
| OLT-(4~5)   | φ64   | ф 68        | φ57          | φ61   |                |
| OLT-(6~7)   | ф84   | ф88         | ф75          | ф78   |                |
| OLT-(8~9)   | Φ95   | ф99         | Φ85          | ф88   | 130            |
| OLT-(10~12) | Ф100  | ф 104       | Φ95          | ф98   |                |
| OLT-(13~17) | ф 105 | ф 109       | φ95          | ф 98  |                |
| OLT-(18~19) | ф115  | ф 119       | ф 105        | ф 108 |                |
| OLT-(20~27) | ф 135 | ф139        | ф124         | ф128  | 145            |
| OLT-(28~31) | ф145  | ф 149       | ф134         | ф138  | 145            |

# Stressing-end Anchorage



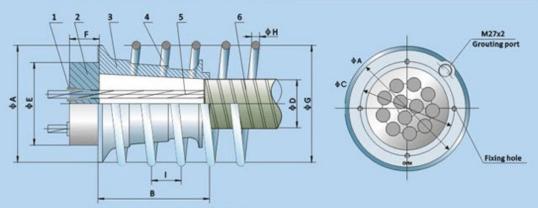


**OVM.M15A Series** OVM.M13A Series


Round bearing plate obtains better load transfer property.

"13" refers to strand diameter 0.5" (12.5/12.7/12.9mm).

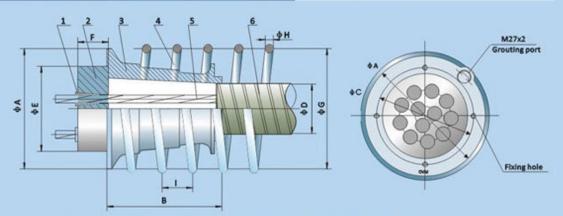
"15" refers to strand diameter 0.6" (15.2/15.24/15.3/15.7mm).











# Stressing-end Anchorage OVM.M15A



1.Wedge 2.Anchor head 3.Bearing plate 4. Spiral reinforcement 5. Strand 6.Duct

|                   |           |                        | IVI   | ain Dat        | a     |          |       |    |                |
|-------------------|-----------|------------------------|-------|----------------|-------|----------|-------|----|----------------|
|                   | Bearing   | plate                  | Duct  | Anchor<br>head | Spira | l reinfo | rceme | nt |                |
| Designation       | ф АхВ     | Bolt<br>distance<br>&C | φD.   | ΦЕХF           | φG    | фН       | 1     | N  | Stressing jack |
| OVM.M15A-1        |           |                        | -     | Φ 50x48        | ф 80  | Ф 6.5    | 30    | 4  | YDC240QX       |
| OVM.M15A-2        | ф 132x80  | 105                    | ф45   | Φ 86x50        | ф 115 | Φ8       | 40    | 4  | YCW100B        |
| OVM.M15A-3        | ф 136х80  | 110                    | ф 50  | φ91x50         | ф 130 | ф 10     | 50    | 4  | YCW100B        |
| OVM.M15A-4        | ф 140х125 | 120                    | ф55   | ф 102x50       | ф 150 | ф 12     | 50    | 4  | YCW100B        |
| OVM.M15A-5        | φ 155x130 | 135                    | ф55   | ф 115x50       | ф 170 | ф12      | 50    | 4  | YCW100B/150B   |
| OVM.M15A-6        | ф 165х160 | 145                    | ф70   | ф 126x52       | ф 200 | Ф12      | 50    | 4  | YCW150B        |
| OVM.M15A-7        | φ 172x170 | 145                    | ф70   | φ 126x53       | ф 200 | ф 12     | 50    | 4  | YCW150B/250B   |
| OVM.M15A-8        | ф 185х180 | 162                    | ф 80  | ф 136х55       | ф 216 | Ф14      | 50    | 5  | YCW250B        |
| OVM.M15A-9        | ф 200x190 | 175                    | ф80   | ф 146х55       | ф 240 | ф14      | 50    | 5  | YCW250B        |
| OVM.M15A-10       | ф 210х210 | 190                    | ф90   | ф 156х58       | ф 270 | ф14      | 60    | 5  | YCW250B        |
| OVM.M15A-11       | ф 210х220 | 190                    | φ90   | ф 166x58       | ф 270 | Ф16      | 60    | 5  | YCW250B        |
| OVM.M15A-12       | ф 214x230 | 190                    | ф90   | ф 166х60       | ф 270 | Ф16      | 60    | 5  | YCW250B/350B   |
| OVM.M15A-13       | ф 224x230 | 190                    | ф90   | ф 170х63       | ф 270 | Ф16      | 60    | 5  | YCW350B        |
| OVM.M15A-14       | ф 233х260 | 200                    | ф90   | ф 176х65       | ф 285 | Ф16      | 60    | 5  | YCW350B        |
| OVM.M15A-15       | ф 246x290 | 220                    | ф90   | ф 186х68       | ф 300 | ф 16     | 60    | 5  | YCW350B        |
| OVM.M15A-16       | ф 246х330 | 220                    | ф90   | ф 196х70       | ф 300 | ф 18     | 60    | 5  | YCW350B/400B   |
| OVM.M15A-17       | ф 258x395 | 220                    | ф90   | ф 196х73       | ф 300 | ф 18     | 60    | 5  | YCW350B/400B   |
| OVM.M15A-18       | ф 272х325 | 230                    | ф 100 | ф 206х75       | ф310  | ф18      | 60    | 6  | YCW400B        |
| OVM.M15A-19       | ф 272х325 | 230                    | ф 100 | Ф 206х75       | ф 310 | Ф18      | 60    | 6  | YCW400B/500B   |
| OVM.M15A-20       | ф 300х325 | 250                    | ф 120 | ф 226х80       | ф 320 | ф 20     | 60    | 6  | YCW500B        |
| OVM.M15A-21/22    | ф 300х325 | 250                    | ф 120 | ф 226x80       | ф 320 | ф 20     | 60    | 6  | YCW500B        |
| OVM.M15A-23/24    | ф 330х430 | 280                    | ф 120 | ф 244х82       | ф 350 | ф 20     | 60    | 6  | YCW650A        |
| OVM.M15A-25/26/27 | ф 330х430 | 280                    | ф 120 | ф 244х85       | ф 350 | Φ20      | 60    | 6  | YCW650A        |
| OVM.M15A-28/29    | ф 352х415 | 290                    | ф 130 | ф 260х88       | ф 390 | Ф 20     | 60    | 7  | YCW650A        |
| OVM.M15A-30/31    | ф 352х415 | 290                    | ф 130 | ф 260x90       | ф 390 | Φ20      | 60    | 7  | YCW650A        |
| OVM.M15A-32/33/34 | ф 386х510 | 330                    | ф 140 | ф 296х95       | ф 465 | Ф 20     | 60    | 8  | YCW650A/900A   |
| OVM.M15A-35/36/37 | ф 394х510 | 330                    | ф 140 | ф 296х100      | ф 465 | Ф 20     | 60    | 8  | YCW650A/900A   |

# Stressing-end Anchorage OVM.M13A



1.Wedge 2.Anchor head 3.Bearing plate 4. Spiral reinforcement 5. Strand 6.Duct

| Main Data         |            |                         |              |                |       |       |           |   |          |  |  |  |  |
|-------------------|------------|-------------------------|--------------|----------------|-------|-------|-----------|---|----------|--|--|--|--|
|                   | Bearing    | olate                   | Duct         | Anchor<br>head | rei   | Spira | Stressing |   |          |  |  |  |  |
| Designation       | ф АхВ      | Bolt<br>distance<br>Φ C | φD<br>(I.D.) | ФЕХБ           | φG    | φн    | фн і      |   | jack     |  |  |  |  |
| OVM.M13A-1        | -          |                         | -            | ф40 х 40       | ф80   | ф6.5  | 30        | 3 | YDC240Q) |  |  |  |  |
| OVM.M13A-2        | ф125 х 60  | 105                     | φ45          | Ф75 x 45       | ф110  | φ6.5  | 30        | 3 | YCW100B  |  |  |  |  |
| OVM.M13A-3        | ф132 х 80  | 105                     | Φ45          | ф80 х 45       | ф120  | ф10   | 50        | 3 | YCW100B  |  |  |  |  |
| OVM.M13A-4        | Ф136 х 102 | 105                     | Ф50          | Ф85 x 48       | ф135  | Ф10   | 50        | 3 | YCW100B  |  |  |  |  |
| OVM.M13A-5        | ф140 x 125 | 120                     | Φ50          | ф 100 x 48     | ф 145 | ф12   | 50        | 4 | YCW100B  |  |  |  |  |
| OVM.M13A-6        | ф155 х 130 | 135                     | Φ60          | ф 105 х 48     | ф165  | ф12   | 50        | 4 | YCW100B  |  |  |  |  |
| OVM.M13A-7        | ф155 x 130 | 135                     | Φ60          | ф105 x 50      | ф165  | ф12   | 50        | 4 | YCW150B  |  |  |  |  |
| OVM.M13A-8        | ф170 x 160 | 140                     | Φ60          | ф116 x 52      | ф175  | ф12   | 50        | 4 | YCW150B  |  |  |  |  |
| OVM.M13A-9        | ф175 x 170 | 145                     | Ф70          | Ф126 x 53      | ф 190 | ф12   | 50        | 4 | YCW150B  |  |  |  |  |
| OVM.M13A-10/11    | ф200 х 190 | 162                     | Ф80          | ф136 x 53      | ф216  | ф14   | 50        | 4 | YCW150B  |  |  |  |  |
| OVM.M13A-12       | ф210 x 210 | 175                     | Ф80          | Ф146 x 55      | ф216  | ф14   | 50        | 5 | YCW250B  |  |  |  |  |
| OVM.M13A-13       | ф210 x 210 | 175                     | Ф80          | ф146 x 55      | ф 230 | ф14   | 50        | 5 | YCW250B  |  |  |  |  |
| OVM.M13A-14       | ф210 х 230 | 190                     | Ф80          | ф 156 x 57     | ф230  | ф14   | 50        | 5 | YCW250B  |  |  |  |  |
| OVM.M13A-15       | Ф214 x 230 | 190                     | Ф 90         | Ф166 x 60      | ф240  | ф16   | 50        | 5 | YCW250B  |  |  |  |  |
| OVM.M13A-16/17    | Ф246 x 270 | 200                     | Φ90          | ф 176 x 62     | ф265  | ф16   | 60        | 5 | YCW250B  |  |  |  |  |
| OVM.M13A-18/19    | Ф246 x 270 | 200                     | Φ90          | Ф176 x 65      | ф 265 | ф16   | 60        | 5 | YCW350B  |  |  |  |  |
| OVM.M13A-20       | Ф260 х 365 | 220                     | Φ90          | ф196 х 68      | ф 290 | ф18   | 60        | 5 | YCW350B  |  |  |  |  |
| OVM.M13A-21/22    | Ф260 х 365 | 220                     | Ф90          | ф196 x 70      | ф 290 | ф18   | 60        | 5 | YCW350B  |  |  |  |  |
| OVM.M13A-23/24    | ф275 х 380 | 245                     | ф100         | ф216 x 73      | ф310  | ф18   | 60        | 6 | YCW400B  |  |  |  |  |
| OVM.M13A-25/26/27 | ф275 х 380 | 245                     | ф100         | ф216 x 75      | ф310  | ф18   | 60        | 6 | YCW400B  |  |  |  |  |
| OVM.M13A-28/29    | ф300 х 400 | 250                     | Ф105         | ф224 x 78      | ф315  | ф18   | 60        | 6 | YCW400B  |  |  |  |  |
| OVM.M13A-30/31    | ф300 х 400 | 250                     | Ф105         | ф 224 х 80     | ф315  | ф18   | 60        | 6 | YCW500B  |  |  |  |  |
| OVM.M13A-32/33/34 | ф330 х 430 | 280                     | Ф120         | ф244 x 82      | ф370  | ф20   | 60        | 7 | YCW500B  |  |  |  |  |
| OVM.M13A-35/36    | ф330 х 430 | 280                     | ф120         | ф 244 х 85     | ф370  | ф20   | 60        | 7 | YCW500B  |  |  |  |  |
| OVM.M13A-37       | ф330 х 430 | 280                     | ф120         | ф244 x 85      | ф370  | ф20   | 60        | 7 | YCW650A  |  |  |  |  |

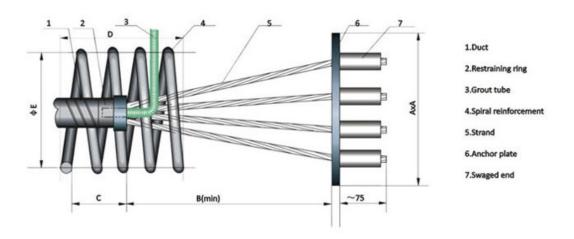
# Dead-end Anchorage Type P OVM.P15/P13

In case of transferring the posttensioning force to the girder end directly, type P anchorage can be adopted. It is composed of the swaged end (swage socket and swage spring being extruded by GYJC50-150 swaging machine), anchor plate, spiral reinforcement, restraining ring, etc. ZB4-500 hydraulic pump serves the operation.





### GYJC50-150 Swaging Machine



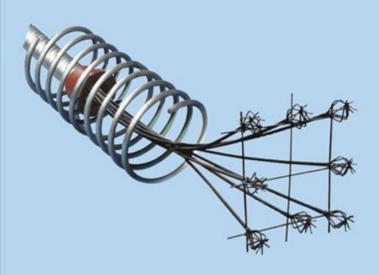



### Swage Socket and Swage Spring



## Anchorage Type P




| _                |              |           |   |              |              |              |              |              | N            | lai | n D | ata | )            |              |              |              |              |       |       |       | U     | nit:mr |
|------------------|--------------|-----------|---|--------------|--------------|--------------|--------------|--------------|--------------|-----|-----|-----|--------------|--------------|--------------|--------------|--------------|-------|-------|-------|-------|--------|
| Strand<br>number | 2            | 3         | 4 | 5            | 6            | 7            | 8            | 9            | 10           | 11  | 12  | 13  | 14           | 15           | 16           | 17           | 18~19        | 20-22 | 23~27 | 28~31 | 32~34 | 35~37  |
| AxA              |              |           |   | 155<br>(140) |              |              | 195<br>(170) |              |              |     |     |     | 260<br>(250) |              | 260<br>(250) | 285<br>(250) | 300<br>(250) | 325   | 350   | 380   | 400   | 420    |
| D                | 180<br>(120) |           |   | 300<br>(180) | 380<br>(300) | 380<br>(380) | 440<br>(380) | 440<br>(440) | 500<br>(440) |     |     |     | 560<br>(500) |              | 560<br>(500) | 720<br>(500) | 720<br>(500) | 900   | 1000  | 1100  | 1100  | 1200   |
| С                |              |           |   | 110<br>(110) |              |              | 120<br>(110) |              |              |     |     |     | 135<br>(135) |              |              | -            | 135<br>(135) | 135   | 135   | 135   | 135   | 135    |
| D                |              | 200 (200) |   | 200 (200)    | 13.60        | 200 (200)    | 200<br>(200) |              | 250<br>(250) |     |     |     | 275<br>(250) | 330<br>(250) | 330<br>(250) | 360<br>(250) | 360<br>(250) | 360   | 360   | 420   | 480   | 480    |
| ΦЕ               |              |           |   |              |              |              |              |              |              |     |     |     | 285<br>(230) |              |              | 300<br>(240) | 310<br>(265) | 320   | 350   | 390   | 465   | 465    |

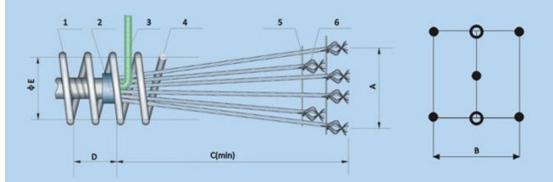
The figures in brackets are for OVM.P13.

# Dead-end Anchorage Type H OVM.H15/H13

Type H anchorage is the most convenient fixed-end solution for on site operation. The prestressing force is transferred to the concrete partially by bond and partially by bulb formed by YH3 bulb machine. ZB4-500 hydraulic pump serves the operation.

### Assembly of Anchorage Type H




### YH3 Bulb Machine





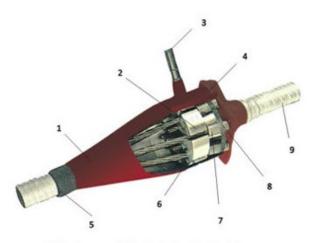


### Dead-end Anchorage Type H



1.Duct 2.Vent 3.Restraining ring 4.Spiral reinforcement 5.Spacer 6.Bulb

|                         |               | Ma       | in Data  |            |          | Unit:mn  |
|-------------------------|---------------|----------|----------|------------|----------|----------|
| Designation             | Qty of strand | A        | В        | C(min)     | D        | ΦЕ       |
| OVM.H15-3               | 3             | 190(130) | 90(70)   | 950(650)   | 145(145) | 130(120) |
| OVM.H <sub>13</sub> -4  | 4             | 190(150) | 210(170) | 950(650)   | 145(145) | 150(135) |
| OVM.H15-5               | 5             | 200(160) | 220(180) | 950(650)   | 145(145) | 170(145) |
| OVM.H15-6/7             | 6/7           | 210(170) | 230(190) | 1300(850)  | 155(155) | 200(165) |
| OVM.H <sub>13</sub> -9  | 9             | 270(220) | 310(250) | 1300(850)  | 155(155) | 240(190) |
| OVM.H <sub>13</sub> -12 | 12            | 330(270) | 390(310) | 1300(850)  | 155(155) | 270(216) |
| OVM.H15-19              | 19            | 390(310) | 470(390) | 1300(950)  | 155(155) | 310(265) |
| OVM.H15-27              | 27            | 450(410) | 520(430) | 1700(1150) | 155(155) | 350(310) |
| OVM.H15-31              | 31            | 510(430) | 570(470) | 1700(1150) | 165(155) | 390(315) |
| OVM.H15-37              | 37            | 510(430) | 690(570) | 2000(1680) | 185(165) | 465(370) |
| OVM.H <sub>13</sub> -43 | 43            | 550(560) | 750(580) | 2500(1680) | 210(185) | 500(390) |
| OVM.H15-55              | 55            | 620(560) | 850(680) | 2500(1980) | 240(185) | 540(465) |


The figures in brackets are for OVM.H13.

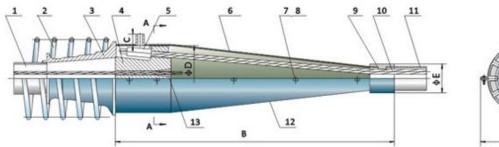
# Coupler OVM.L15/L13

Couplers are used to elongate the tendons which due to their length or the construction method used in the project, cannot be installed or tensioned as one unit.

Coupler L15/L13 usually includes seven parts: coupler block, bearing plate, protective sleeve, restraining ring, spiral reinforcement, wedges and swaged ends. GYJC50-150 swaging machine and hydraulic pump ZB4-500 serve operation for extruding the swaged end.

### Multi-strand Coupler L15/L13




- 1.Protective cover 2.Coupler block 3.Grouting tube
- 4.Bearing plate 5.Restraining ring 6.Wedges
- 7.Swaged end 8.Omega ring 9.Duct


### Coupler Block



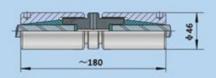


## Coupler L15/L13

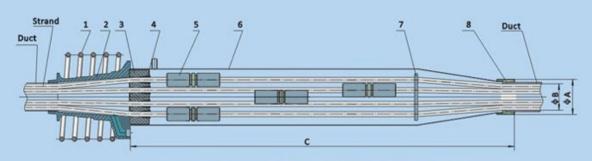




1.Duct 2.Spiral reinforcement 3.Bearing plate 4.Coupler block 5.Swaged end 6.Protective cover I 7.Bolt 8.Nut 9.Restraining ring 10.Strand 11.Duct 12.Protective cover II 13.Wedge


|             | Main Data | of Coupler O | VM.L15 |     | Un  |
|-------------|-----------|--------------|--------|-----|-----|
| Designation | A         | В            | С      | φD  | ΦЕ  |
| L15-2       | 191       | 599          | 40     | 148 | 80  |
| L15-3       | 195       | 617          | 40     | 152 | 80  |
| L15-4       | 207       | 669          | 40     | 164 | 85  |
| L15-5       | 219       | 722          | 40     | 176 | 85  |
| L15-(6~7)   | 233       | 722          | 40     | 190 | 100 |
| L15-8       | 241       | 713          | 40     | 198 | 110 |
| L15-9       | 251       | 757          | 40     | 208 | 110 |
| L15-10      | 263       | 766          | 40     | 220 | 120 |
| L15-(11~12) | 273       | 810          | 40     | 230 | 120 |
| L15-13      | 277       | 837          | 40     | 234 | 120 |
| L15-14      | 283       | 822          | 40     | 240 | 120 |
| L15-15      | 295       | 877          | 40     | 252 | 120 |
| L15-(16~17) | 305       | 926          | 40     | 262 | 120 |
| L15-(18~19) | 311       | 955          | 40     | 268 | 140 |
| L15-(20~22) | 331       | 960          | 40     | 288 | 180 |
| L15-(23~27) | 361       | 1096         | 40     | 318 | 180 |
| L15-(28~31) | 409       | 1268         | 40     | 366 | 180 |
|             | Main Data | of Coupler O | VM.L13 |     | Un  |
| Designation | A         | В            | С      | ΦD  | φE  |
| L13-2       | 179       | 575          | 40     | 136 | 75  |
| L13-3       | 184       | 597          | 40     | 141 | 75  |
| L13-4       | 189       | 597          | 40     | 146 | 80  |
| L13-5       | 204       | 662          | 40     | 161 | 80  |
| L13-(6~7)   | 209       | 640          | 40     | 166 | 90  |
| L13-8       | 220       | 689          | 40     | 177 | 90  |
| L13-9       | 230       | 689          | 40     | 187 | 100 |
| L13-(10~11) | 240       | 689          | 40     | 197 | 110 |
| L13-(12~13) | 250       | 734          | 40     | 207 | 110 |
| L13-14      | 260       | 780          | 40     | 217 | 110 |
| L13-15      | 270       | 783          | 40     | 227 | 120 |
| L13-(16~19) | 280       | 832          | 40     | 237 | 120 |
| L13-(20~22) | 315       | 991          | 40     | 272 | 120 |
| L13-(23~27) | 366       | 7716         | 40     | 323 | 130 |
|             | 407       | 1338         | 40     | 364 | 140 |

# **Coupler PD**


This coupler ensures the connection of the second stage tendon to the first stage using mono-coupler. It is composed of n (n-strand number) pieces of mono-couplers which are set parallelly in the protective sleeve,

usually including seven parts: anchor head, bearing plate, spiral reinforcement, protective sleeve, restraining ring, wedges and mono-coupler.

### Coupler Type PD





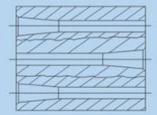


1.Spiral reinforcement 2.Bearing plate 3.Working anchor head 4.Wedge 5.Mono-strand coupler 6.Protectine sleeve 7.Plate 8.Restraining ring

| Main Data     |             |              |             |              |              |              |              |              |              | Unit:mm                 |               |                         |
|---------------|-------------|--------------|-------------|--------------|--------------|--------------|--------------|--------------|--------------|-------------------------|---------------|-------------------------|
| Spec.<br>Size | OVM 15 LF-3 | OVM 15 L-F-4 | OM 15 L-F-5 | OVM 15 L-F-6 | OVM 15 L-F-7 | OVM 15 L-F-8 | OVM 15 L-F-9 | OVM 15 LF-12 | OVM 15 LF-15 | OVM <sub>13</sub> LF-27 | OWN 15 L-F-31 | OVM <sub>13</sub> LF-37 |
| ΦА            | 80          | 85           | 85          | 100          | 100          | 110          | 100          | 120          | 140          | 180                     | 180           | 200                     |
|               | (75)        | (80)         | (80)        | (90)         | (90)         | (90)         | (100)        | (110)        | (120)        | (140)                   | (145)         | (170)                   |
| В             | 58          | 63           | 63          | 80           | 80           | 90           | 90           | 100          | 110          | 130                     | 140           | 150                     |
|               | (53)        | (58)         | (58)        | (68)         | (68)         | (68)         | (80)         | (90)         | (100)        | (110)                   | (115)         | (130)                   |
| с             | 840         | 1080         | 1090        | 810          | 1130         | 1450         | 1150         | 1200         | 1310         | 1420                    | 1410          | 1560                    |
|               | (830)       | (1060)       | (1080)      | (790)        | (1090)       | (1420)       | (1130)       | (1180)       | (1250)       | (1360)                  | (1400)        | (1430)                  |

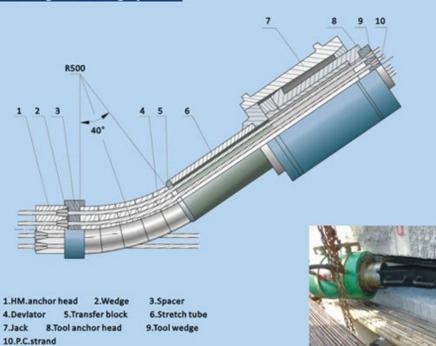
The figures in brackets are for OVM.13L-F.



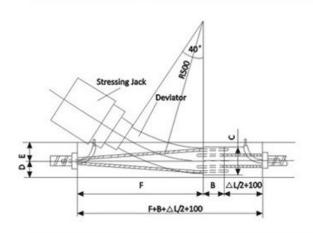

# Ring Anchoring System OVM.HM

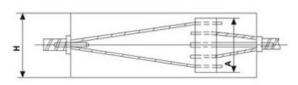
### Application Field

- Round PC storage tank, such as silo, liquid gas tank and sewage treatment tank
- PC containment of nuclear reactor
- PC Hydrodynamic tunnel and well
- Other similar round prestress concrete structure


When prestressing is applied to a ring structure, OVM.HM anchoring system is recommended. Both stressing end and dead end of ring prestressing tendon are overlapped and staggered at a same anchor head as a coupler. A special deviating device is required for tensioning tendons.

### Anchor Head of Ring Anchoring System




### OVM.HM Ring Anchoring System




### Structural Diagram of OVM.HM Anchoring System

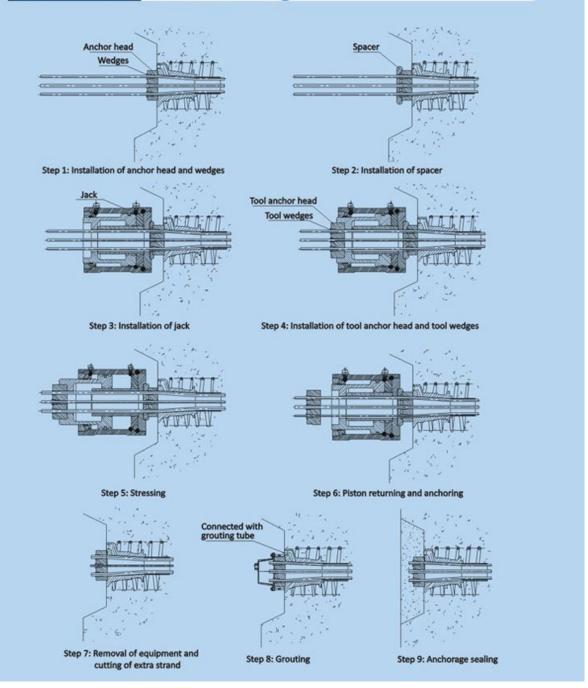




|             | Main Data Units |     |     |     |      |     |  |  |  |  |
|-------------|-----------------|-----|-----|-----|------|-----|--|--|--|--|
| Designation | A               | В   | С   | D   | F    | н   |  |  |  |  |
| HM15-2      | 160             | 48  | 60  | 45  | 700  | 200 |  |  |  |  |
| HM15-4      | 196             | 80  | 90  | 65  | 800  | 240 |  |  |  |  |
| HM15-6      | 210             | 90  | 130 | 85  | 800  | 250 |  |  |  |  |
| HM15-8      | 230             | 100 | 148 | 100 | 800  | 270 |  |  |  |  |
| HM15-12     | 290             | 100 | 160 | 110 | 800  | 320 |  |  |  |  |
| HM15-14     | 320             | 120 | 180 | 110 | 1000 | 340 |  |  |  |  |

1. Parameter E would be determined according to actual engineering structure.












# **Installation and Stressing**



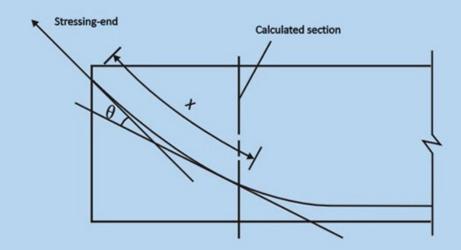


# **Design Considerations**

- Friction losses in anchorage The coefficient of friction is no more than 0.025.
- Stress losses due to draw-in of wedges The draw-in value of OVM anchorage is  $\,\lambda \leqslant \! 5 mm$  , and  $\lambda$ ≤6mm is recommended for calculation of the stress losses due to draw-in action.
- Friction losses along tendon Friction losses along the tendon are actually the stress losses due to the friction between tendon and duct, which can be determined with the following formula.

$$\sigma_{12} = \sigma_{con} \left( 1 - \frac{1}{e^{kx + \mu \theta}} \right)$$

 $\boldsymbol{O}_{\scriptscriptstyle{12}\,\text{---}}$  prestress losses caused by friction between tendon and its duct (MPa)


 $\sigma_{\!\scriptscriptstyle con}$  --- Section stress without losses.



X--- Duct length between stressing-end and calculated section (m)

 $\theta$  — Accumulated angle (rad)

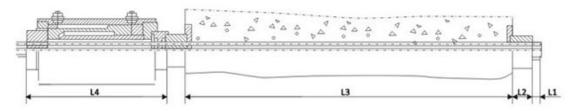
 $\mu$  , k — friction coefficient, refers to Table 1 and 2.



| Table1: Co               | oefficient who | en using strand and di       | ıct          |
|--------------------------|----------------|------------------------------|--------------|
|                          |                | к                            |              |
| Duct mode                | K              | Wire, strand, bare steel bar | Deformed bar |
| Embedded Steel Pipe      | 0.003          | 0.35                         | 0.40         |
| Embedded Corrugated Pipe | 0.0015         | 0.25                         |              |
| Core-Pulling Formed      | 0.0015         | 0.55                         | 0.60         |
| Plastic Corrugated Pipe  | 0.001-0.003    | 0.14                         |              |

When GZ anchorage or Similar anchorages are used, the anchoring port friction loss would be taken into consideration, which can be determined by the actual data measured.

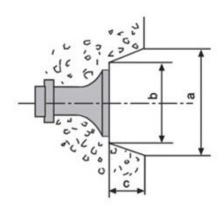
| Table 2: Coefficient when using unbonded strand |       |      |  |  |  |  |
|-------------------------------------------------|-------|------|--|--|--|--|
| Unbonded prestressed tendon                     | к     | μ    |  |  |  |  |
| φ 15 Steel strand                               | 0.040 | 0.12 |  |  |  |  |


The friction coefficients of strands with other diameters refer to that of  $\, \Phi \, 15 \text{mm}$  strand.

### ■ Calculation of Strand length

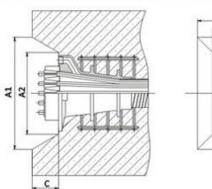
- When using anchorage with wedges on both sides and tensioning on one side, as the diagram as follows, L (length of strand) can be determined with the formula: L= L1+2\*L2+L3+L4+100~150mm
- When using anchorage with wedges on both sides and

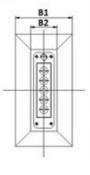
tensioning on both sides, L (length of strand) can be determined with the formula: L= L3+2\*(L2+L4)+200~300mm


 When using dead-end anchorage type P or type H on one side of tendon, the length of strand shall be considered up to the embedding position of anchorage.



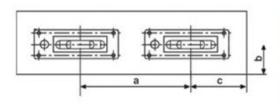
Calculation of length of strand (tensioning on one side)


# **Minimum** Interval of Anchorage


### **Recess Dimension**



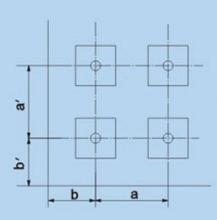
| Recess Dimension         |          |          |          |  |  |  |  |  |
|--------------------------|----------|----------|----------|--|--|--|--|--|
| Designation              | a(mm)    | b(mm)    | c(mm)    |  |  |  |  |  |
| OVM.M15(13)-2~4          | 265(265) | 160(160) | 90(90)   |  |  |  |  |  |
| OVM.M15(13)-5            | 335(265) | 230(160) | 90(90)   |  |  |  |  |  |
| OVM.M15(13)-6~7          | 430(275) | 290(160) | 120(100) |  |  |  |  |  |
| OVM.M15(13)-8~11(8~12)   | 430(370) | 290(220) | 120(130) |  |  |  |  |  |
| OVM.M15(13)-12~14        | 490 -    | 340 -    | 130 -    |  |  |  |  |  |
| OVM.M15(13)-15~19(13~19) | 520(437) | 360(275) | 140(140) |  |  |  |  |  |
| OVM.M15(13)-20~22        | 575(500) | 400(330) | 150(150) |  |  |  |  |  |
| OVM.M15(13)-23~29(23~31) | 620(535) | 440(340) | 150(170) |  |  |  |  |  |
| OVM.M15(13)-30~37(32~37) | 710(600) | 510(385) | 170(190) |  |  |  |  |  |
| OVM.M15(13)-38~44        | 760(710) | 540(470) | 190(210) |  |  |  |  |  |
| OVM.M15(13)-45~55        | 860(775) | 620(520) | 210(220) |  |  |  |  |  |

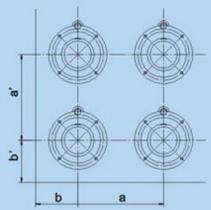

### Recess dimension (slab tendon 0°)





| Recess dimension (slab tendon 0°) |     |     |     |    |    |  |  |  |  |
|-----------------------------------|-----|-----|-----|----|----|--|--|--|--|
| Designation                       | A1  | A2  | B1  | B2 | С  |  |  |  |  |
| BM15-2                            | 275 | 170 | 195 | 90 | 90 |  |  |  |  |
| BM15-3                            | 305 | 200 | 195 | 90 | 90 |  |  |  |  |
| BM15-4                            | 345 | 240 | 195 | 90 | 90 |  |  |  |  |
| BM15-5                            | 385 | 280 | 195 | 90 | 90 |  |  |  |  |


### Slab Anchorage




|             | Sla                                    | ab An | chor | age |    | Unit:mm |  |  |  |
|-------------|----------------------------------------|-------|------|-----|----|---------|--|--|--|
|             | Actual Concrete Strength (Cube Sample) |       |      |     |    |         |  |  |  |
| Designation | 40(MPa)                                |       |      | 1   | )  |         |  |  |  |
|             | a                                      | ь     | с    | a   | b  | С       |  |  |  |
| BM15-2      | 230                                    | 75    | 115  | 220 | 70 | 110     |  |  |  |
| BM15-3      | 270                                    | 80    | 135  | 240 | 75 | 130     |  |  |  |
| BM15-4      | 340                                    | 95    | 170  | 330 | 90 | 165     |  |  |  |
| BM15-5      | 370                                    | 95    | 185  | 360 | 90 | 180     |  |  |  |

### Conventional Anchorage

a,a` ≥a,; b,b`≥b,;
a,—minimum interval
between bearing plates
b,—minimum distance
between bearing plate
centre and side face of
concrete.

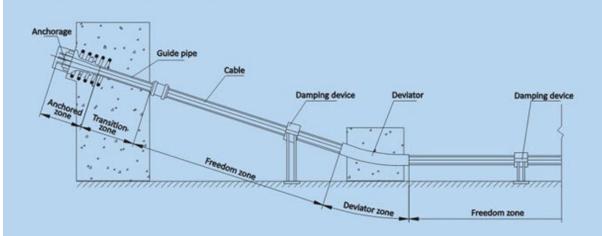




|                |                     | <b>Actual Concrete</b> | Strength of Anche   | ored Area(Cube S    | ample)              |                     |
|----------------|---------------------|------------------------|---------------------|---------------------|---------------------|---------------------|
| Specs          | 40(N                | 40(MPa)                |                     | MPa)                | 60(MPa)             |                     |
|                | a <sub>s</sub> (mm) | b <sub>s</sub> (mm)    | a <sub>s</sub> (mm) | b <sub>o</sub> (mm) | a <sub>s</sub> (mm) | b <sub>e</sub> (mm) |
| OVM.M15(13)-2  | 140(120)            | 90(85)                 | 135(120)            | 85(85)              | 130(120)            | 85(85)              |
| OVM.M15(13)-3  | 170(145)            | 110(95)                | 155(135)            | 95(90)              | 145(125)            | 95(90)              |
| OVM.M15(13)-4  | 198(180)            | 120(115)               | 176(150)            | 110(100)            | 168(140)            | 107(100             |
| OVM.M15(13)-5  | 220(195)            | 135(115)               | 200(170)            | 120(105)            | 184(155)            | 117(105             |
| OVM.M15(13)-6  | 240(200)            | 155(125)               | 224(180)            | 135(115)            | 224(180)            | 132(115             |
| OVM.M15(13)-7  | 260(220)            | 160(135)               | 235(200)            | 140(115)            | 224(190)            | 132(115             |
| OVM.M15(13)-8  | 275(235)            | 165(140)               | 250(210)            | 150(120)            | 246(200)            | 147(120             |
| OVM.M15(13)-9  | 295(245)            | 175(155)               | 265(225)            | 155(130)            | 256(210)            | 153(128             |
| OVM.M15(13)-10 | 310(260)            | 180(155)               | 280(235)            | 170(141)            | 290(232)            | 170(141             |
| OVM.M15(13)-11 | 325(270)            | 185(165)               | 295(245)            | 170(145)            | 290(232)            | 170(141             |
| OVM.M15(13)-12 | 340(285)            | 190(180)               | 310(260)            | 170(150)            | 290(245)            | 170(141             |
| OVM.M15(13)-13 | 355(300)            | 195(190)               | 320(270)            | 175(160)            | 300(255)            | 170(150             |
| OVM.M15(13)-14 | 365(310)            | 210(195)               | 330(280)            | 180(165)            | 320(255)            | 178(150             |
| OVM.M15(13)-15 | 380(316)            | 220(195)               | 345(290)            | 185(165)            | 330(275)            | 185(155             |
| OVM.M15(13)-16 | 390(330)            | 235(200)               | 355(300)            | 195(170)            | 335(285)            | 185(155             |
| OVM.M15(13)-17 | 405(340)            | 250(205)               | 370(310)            | 210(175)            | 345(295)            | 187(155             |
| OVM.M15(13)-18 | 445(350)            | 255(205)               | 380(315)            | 215(175)            | 355(300)            | 190(170             |
| OVM.M15(13)-19 | 430(360)            | 255(215)               | 390(325)            | 215(180)            | 365(310)            | 190(170             |
| OVM.M15(13)-21 | 455(380)            | 268(225)               | 410(345)            | 223(190)            | 390(325)            | 205(180             |
| OVM.M15(13)-22 | 485(390)            | 270(230)               | 415(350)            | 225(195)            | 410(330)            | 205(180             |
| OVM.M15(13)-25 | 500(410)            | 285(240)               | 450(375)            | 235(200)            | 425(350)            | 220(190             |
| OVM.M15(13)-27 | 510(430)            | 295(250)               | 460(390)            | 245(210)            | 435(370)            | 220(190             |
| OVM.M15(13)-37 | 600(500)            | 350(285)               | 545(460)            | 295(250)            | 510(430)            | 270(221             |
| OVM.M15(13)-43 | 645(545)            | 405(320)               | 585(495)            | 340(270)            | 555(465)            | 300(240             |
| OVM.M15(13)-55 | 730(610)            | 440(360)               | 660(555)            | 370(300)            | 620(520)            | 330(270             |



# **Features of OVM External Prestressing Systems**


- Post-tensioning Systems & External Prestressing Material and System by the international FIP and Chinese National Standard of GB/T14370-2007 Anchorage, Grip and Coupler for Prestressing Tendons.
- ■Conform to the Recommendations for the Acceptance of Durable, with excellent anti-corrosive and anti-fatigue property. Special damping device is equipped to reduce the tendon vibration.
  - Easy to inspect, maintain and replace the tendon.
  - Low radius deviator, reduced stress concentration on deviating area.

# **Basic Components of OVM External Prestressing Systems**

The basic components of external prestressing system include:

- External cables, ducts and grouting materials
- Anchorage system
- Deviating device
- Anti-corrosion system
- Damping device

### OVM External Prestressing System





# **Anti-corrosion** System of External Prestressing Cables

There are six types of OVM external prestressing cables:

OVM-S1, OVM-S2, OVM-S3, OVM-S4, OVM-S5 and OVM-S6.













| Basic components of external prestressing cables |             |                     |                 |                                    |                 |                                     |  |  |
|--------------------------------------------------|-------------|---------------------|-----------------|------------------------------------|-----------------|-------------------------------------|--|--|
| Туре                                             | OVM-S1      | OVM-S2              | OVM-S3          | OVM-S4                             | OVM-S5          | OVM-S6                              |  |  |
| Strand Type                                      | Bare strand | Epoxy-coated strand | Unbonded strand | Epoxy-coated<br>unbonded<br>strand | Unbonded tendon | Expoxy-coated<br>unbonded<br>tendon |  |  |
| Duct                                             | HDPE        | sheath              | HDP             | E sheath                           | Hot extru       | ided HDPE                           |  |  |
| Grouting                                         | Mortar,ep   | oxy,grease          | No grout o      | n free length                      | No grout o      | n free length                       |  |  |

OVM-S3 and OVM-S4 is the type without grouting material. These 2 kinds of cables can be removed and replaced. The cables on free length can be inspected at any time. The cable is self-protective with each strand's anti-corrosion performance. The

external HDPE sheath is to prevent internal unbonded tendons from being damaged by external factors. The HDPE sheath is made up of one big and one small retractable pipes.



# **Deviating Device**

Stress condition of strand will be better as the radius of deviator of external cable is increased. But bigger radius will result in bigger structural dimension and bigger deadweight of bridge. So a proper radius is needed on condition of essential safety. Additional stress created by installation and construction can be eliminated by smooth mouth of deviator, and would decrease the abrasion of HDPE sheath as well.

$$V_{\rm m} = \frac{d}{2R} E$$

d---diameter of wire

R---bending radius

E-elastic modulus of strand

Fatigue strength of bending external prestressing cable is decreased to some extent because of additional flexural stress. So it is needed to check the strand stress plus flexural stress. It is difficult to accurately calculate the flexural stress of strands. But this can be done with the following formula if assuming no friction between steel wires.

| he minimum radius of deviator |               |  |  |  |  |
|-------------------------------|---------------|--|--|--|--|
| Strand Type                   | Min Radius(m) |  |  |  |  |
| 7- ф 15.2                     | 2.0           |  |  |  |  |
| 12- φ 15.2                    | 2.5           |  |  |  |  |
| 19-φ15.2                      | 3.0           |  |  |  |  |
| 27-φ15.2                      | 3.5           |  |  |  |  |
| 31-φ5.2                       | 4             |  |  |  |  |

Stress loss due to friction between prestressing steels and ducts can be classified into 2 parts. One is due to friction between prestressing steels and ducts by vertical pressure of the curving section.

The other one is caused by warp and tough surfaces of ducts. The formula is shown below:

$$\sigma_{s1} = \sigma_{k} [1 - e^{-(\mu \theta + kx)}]$$

µ: Friction coefficient between prestresing steel and duct.

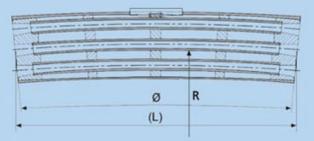
K : Coefficient for local warp of every meter duct.

External prestressing cables are outside the concrete structures, made up of bending lines at deviator or anchor zones and straight lines between them. Friction effect due to warp of ducts is so weak on straight lines as to be ignored. Length of ducts on bending lines is short in general. So prestressing loss due to warp and tough surface of ducts can also be ignored.

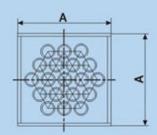
Assume k=0,

the formula above will be equal

to 
$$\sigma_{e1} = \sigma_k (1 - e^{-\mu \theta})$$
.


### **Intergrated Deviator (Conventional Deviator)**






### Distributed Deviator (Individual Strand Deviator)







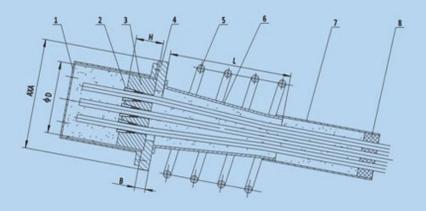


Individual strand deviator can make strands parallel and replaceable, every strand bears individual forces, ensures little abrasions existed between strands and de viator. Each guiding duct connects each other through the linked plates. Cement grout can separate external tendons, fix guiding ducts and bear the pressure be

tween strands due to un-simultaneous tensioning. Guiding ducts can be reshaped horizontally and vertically for requirements from different directions and bending radius. At both ends of each guiding duct, there is a compensating device with a trumpet to offset the angular deviation in construction process.






Sutong Bridge, China

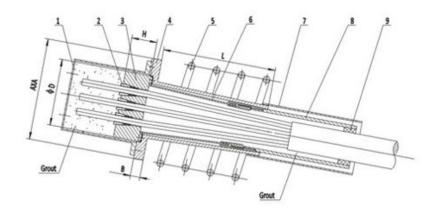
# **OVM** External Prestressing Anchorages

Stress amplitude of prestressing tendons is a very important parameter to the design of prestressing anchorage on the condition of live load. External tendons are individual members relative to the whole structure. They are bonded with concrete only at anchoring zone and the deviator outside the structure. Therefore the stress amplitude of the

prestressing tendon depends on the deformation of the whole structure. Based on the developed OVM anchoring technology, several kinds of external prestressing anchorages are designed to meet some special requirements of different projects.

### Type OVM.A




1.Protective cover 2.Working wedge 3.Working anchor head 4.Bearing plate 5.Spiral reinforcement 6.Trumpet 7.Embedded pipe 8.Sealing device

| Main Data Unit:n |       |     |            |     |  |  |  |  |
|------------------|-------|-----|------------|-----|--|--|--|--|
| Designation      | ΦВ    | н   | AxAxB      | L   |  |  |  |  |
| OVM.A15-7        | ф157  | 60  | 240x240x45 | 265 |  |  |  |  |
| OVM.A15-12       | ф175  | 70  | 300x300x45 | 301 |  |  |  |  |
| OVM.A15-19       | ф 240 | 90  | 370x370x60 | 555 |  |  |  |  |
| OVM.A15-27       | Ф 260 | 110 | 420x420x60 | 630 |  |  |  |  |
| OVM.A15-31       | ф 275 | 130 | 470x470x75 | 765 |  |  |  |  |

### OVM PRESTRESSING SYSTEMS

### Type OVM.TA

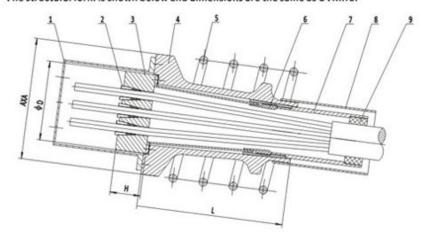
OVM.TA anchorage is derived from OVM.A anchorage by adding a insulating equipment to trumpet. If tendon needs to be replaced, the whole anchorage can be removed from the end. The structural form is shown below and dimensions are the same as that of OVM.A.



- 1.Protective cover
- 2.Working wedge
- 3.Working anchor head
- 4.Bearing plate 5.Spiral reinforcement
- 6.Bush
- 7.Embedded pipe
- 8.Sealing chamber 9.Sealing device

### Type OVM.TS

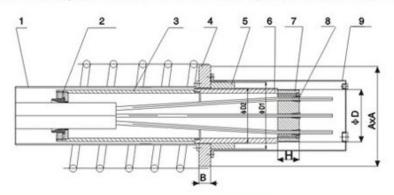



- 1.Protective cover 2.Working wedge 3.Working anchor head
- 4.Bearing plate 5.Spiral reinforcement
- 6.Embedded pipe 7.Sealing device

|             | Main Data Uni |     |             |  |  |  |
|-------------|---------------|-----|-------------|--|--|--|
| Designation | φD            | н   | AxAxL       |  |  |  |
| OVM.TS15-7  | ф157          | 60  | 240x240x290 |  |  |  |
| OVM.TS15-12 | ф 175         | 70  | 285x285x340 |  |  |  |
| OVM.TS15-19 | ф 240         | 90  | 350x350x470 |  |  |  |
| OVM.TS15-27 | ф 260         | 110 | 410x410x495 |  |  |  |
| OVM.TS15-31 | ф 275         | 130 | 465x465x565 |  |  |  |

# **OVM** External Prestressing Anchorages

### Type OVM.TT


The structural form is shown below and dimensions are the same as OVM.TS.



- 1.Protective cover
- 2.Working wedge
- 3.Working anchor head
- 4.Bearing plate
- 5.Spiral reinforcement 6.Isolating device
- 7.Sealing chamber
- 8.Embedded pipe
- 9.Sealing device

### Type OVM.TSK

The tendon is replaceable and the tendon force can be adjusted when OVM.TSK anchorage is employed.



- 1.Embedded pipe
- 2.Sealing device
- 3.Sealing chamber
- 4.Bearing plate
- 5.Nut 6.Socket
- 7.Working anchor head
- 8.Working wedge 9.Protective cover

| Main Data Unit:m |       |     |            |             |             |  |  |
|------------------|-------|-----|------------|-------------|-------------|--|--|
| Designation      | φD    | н   | AxAxB      | ф <b>D1</b> | <b>♦ D2</b> |  |  |
| OVM.TSK15-7      | ф 150 | 70  | 285x285x30 | ф 210       | ф 160       |  |  |
| OVM.TSK15-12     | ф 205 | 80  | 360x360x40 | ф 270       | ф 220       |  |  |
| OVM.TSK15-19     | ф 230 | 100 | 420x420x50 | ф 305       | ф 245       |  |  |
| OVM.TSK15-27     | ф 270 | 100 | 490x490x60 | ф 340       | ф 285       |  |  |
| OVM.TSK15-31     | ф 270 | 110 | 500x500x65 | ф 340       | ф 285       |  |  |

# OVM external prestressing anchorage can be properly selected according to design requirements.

| Anchorage Type   | Cable Type    | Grouting Material                                   | Deviator Type                  | Characteristics                     |
|------------------|---------------|-----------------------------------------------------|--------------------------------|-------------------------------------|
| OVM.A<br>OVM.TS  | OVM-S1 OVM-S2 | Grease                                              | Individual strand deviation    | Mono-strand replaceable             |
|                  | OVM-S3 OVM-S4 | Grease in anchor,<br>no grouting on free<br>length. | Individual strand deviation    | Mono-strand replaceable             |
|                  | OVM-S5 OVM-S6 | Grease in anchor                                    | Spindly deviation              | Replaceable in total                |
| OVM.AT<br>OVM.TT | OVM-S1 OVM-S2 | Grease                                              | Individual strand deviation    | Mono-strand replaceable             |
|                  | OVM-S3 OVM-S4 | Grease in anchor,<br>no grouting on free<br>length. | Individual strand<br>deviation | Mono-strand replaceable             |
|                  | OVM-S1 OVM-S2 | Cement or epoxy grout                               | Individual strand deviation    | Replaceable in total                |
|                  | OVM-S3 OVM-S4 | Grease in anchor,<br>no grouting on free<br>length. | Spindly deviation              | Replaceable in total                |
|                  | OVM-SS OVM-S6 | Grease in anchor,<br>no grouting on free<br>length. | Spindly deviation              | Replaceable in total                |
| OVM.TSK          | OVM-S5 OVM-S6 | Grease in anchor,<br>no grouting on free<br>length. | Spindly deviation              | Replaceable and adjustable in total |

# **Damping Device**

Traffic loads bring the vibration to the structures and cables. If natural frequency of the cable is close to that of the structure, damage will be caused by resonance. In order to vary the natural frequency of the cable, damping devices should be properly installed on free length of tendon to shorten vibration zone.





### **Grouting Services NZ Limited**

Grouting Services has been operating in New Zealand for over 40 years. In this time, they have established themselves as a leader in their sector and have earned the respect of their customers. Grouting Services is proudly New Zealand owned and operated.

### **Street Address:**

49 Mihini Road Swanson Auckland

T +64 9 837 2510 F +64 9 837 4050

### Richard Tunnicliffe M +64 21 927 019

E richardt@groutingservices.co.nz

### David Sharp

M +64 21 757 566 E davids@groutingservices.co.nz

### **Postal Address:**

PO Box 95169 Swanson Auckland

W www.groutingservices.co.nz

### Peter Adye

M +64 21 934 292 E petera@groutingservices.co.nz

### **Terry Palmer**

M +64 22 401 0765 E terryp@groutingservices.co.nz

